801063 DIGITAL LINEAR FILTERING I

Final Examination: 05.04.2004

NO literature in the examination, short, compact, and pithy answers are preferred.

- 1. Explain shortly (using formulas and/or words) the meanings of the following terms:
 - (a) Minimax error (1pt)
 - (b) Direct-form II structure (1pt)
 - (c) Type III linear-phase FIR filters (1pt)
 - (d) Bilinear transform (1pt)
 - (e) Rounding and truncation (1pt)
 - (f) Filter scaling (1pt)
- 2. (a) What is a linear digital filter? (2pt)
 - (b) A discrete system is given by the following figure:

What is the impulse response, the transfer function, and the frequency response of this system? Is this system stable? (2pt)

- (c) The frequency response of a system is given by $H(e^{j\omega}) = 2.33 e^{-j1.5\omega j\pi/4}$. What is the phase and the group delay of this system? (2pt)
- 3. (a) Describe the basic steps in Remez algorithm. (3pt)
 - (b) It is desired to design a lowpass FIR filter by windowing. The maximum allowed passband and stopband ripples are $\delta_p = 0.003$ and $\delta_s = 0.001$. Which fixed widow or windows can be used for designing such a filter? Give an explanation. (2pt)
 - (c) Explain how to generate a transposed structure. (1pt)
- 4. Design a Butterworth digital filter with the aid of the bilinear transformation to satisfy following design criteria: $\omega_p = 0.45\pi$, $\omega_s = 0.75\pi$, $A_p = 3\text{dB}$, and $A_s = 25\text{dB}$. (6pt)

 For estimating the minimum order of a Butterworth filter satisfying the given criteria following expression is valid: $N \ge \frac{\log_{10} \left[(A^2 1)/\varepsilon^2 \right]}{2 \cdot \log_{10} \left(\Omega_s \right)}$
- (a) Digital filters are implemented using finite word lengths for both the data and the filter coefficients. Name and describe three scaling methods that can be used in such designs.
 (3pt)
 - (b) What are the main errors caused by the use of finite word lengths for both the data and the filter coefficients. (2)
 - (c) Explain limit cycle (1)