## SGN-4010 Puheenkäsittelyn Menetelmät Speech Processing Methods

exam 31.1.2006

You may answer either in Finnish or English.

**Problem 1.** Explain briefly what the following terms mean (1 point/term): a) time-frequency resolution (aika-taajuusresoluutio), b) overlap-add, c) prosody (prosodia), d) lattice filter (ristikkorakenne), e) ARMA-model, f) Toeplitz matrix.

## Problem 2.

- a) When speaking after inhaling helium from a balloon, speech gets a 'Mickey Mouse'-quality due to shifted formant frequencies. Assuming that a person's vocal tract length is a uniform tube of length 16 cm and the speed of sound in helium is 970 m/s, what are her formant frequencies after inhaling helium? (2 points)
- b) You are a world-famous engineer at a company which produces diving equipment. The mixture of air and helium which divers breathe causes the formants of speech to be shifted by the factor  $\gamma$ , i.e. with the mixture the formants are at frequencies  $F_i' = \gamma F_i$ , where  $F_i'$  is the  $i^{\rm th}$  formant with the mixture and  $F_i$  is the  $i^{\rm th}$  formant with normal air.

Your job is to devise a simple, practical signal processing algorithm which will convert the divers' speech into normal-sounding speech. Describe an algorithm that will do this. (4 points)

**Problem 3.** The autocorrelation function r(k) of a frame of speech is

| k    | 0  | 1  | 2  | 3 | 4 | 5 | 6 |
|------|----|----|----|---|---|---|---|
| r(k) | 12 | 11 | 10 | 8 | 6 | 4 | 2 |

The optimal  $3^{rd}$ -order prediction-error filter  $A_3(z)$  for this frame is

$$A_3(z) = 1 - 0.9318z^{-1} - 0.5000z^{-2} + 0.5682z^{-3}.$$

- a) What is the optimal  $3^{\rm rd}$ -order prediction error energy  $E_3$ ? (1 point)
- b) What are the coefficients of the filter  $p_0 + p_1 z^{-1} + p_2 z^{-2}$  which predicts the next sample of the frame as well as possible? (2 points)
- c) What is the optimal  $4^{th}$ -order prediction-error filter  $A_4(z)$  for this frame? (3 points)

**Problem 4.** Explain the main principles of how rule-based and concatenative speech synthesizers work and what the main differences between them are. (6 points)