SGN-2206 Adaptive Signal Processing Examination December 2005

- 1. (4 points) State the problem of optimal filter design for the backward predictor (model, data available, criterion to be minimized).
- 2. (4 points) Consider a sigmoidal perceptron. Write its model, the training equations and the diagram showing the flow of computations.
- 3. (4 points)
 - Write the normalized LMS algorithm for a FIR filter with two weights.
 - Use an example to show explicitly the computations required for the first two iterations of the algorithm.
- 4. (3 points) Consider the predictor

$$\hat{u}(n) = au(n-2)$$

Compute the optimal value of the parameter a, as a function of autocorrelation values of the process u(n).

5. (5 points) Consider a FIR filter $y(n) = \underline{w}^T \underline{u}(n)$, and denote the noisy gradient estimate used in LMS as $g(n) = \hat{\nabla}_{\underline{w}} J$.

Describe the effect of filtering $\underline{g}(n)$ by a first order IIR filter $H(z) = \frac{1-\gamma}{1-\gamma z^{-1}}$.

Describe the resulting algorithm in terms of updating the quantity $\Delta \underline{w}(n) = \underline{w}(n) - \underline{w}(n-1)$, the increment in parameters at time n and explain the name momentum LMS given to the resulting algorithm.

6. (6 points) Consider a FIR(1) filter y(n) = w(n)u(n) where all quantities are scalars. We intend to minimize the time varying cost function

$$J(n) = e(n)^2 + \alpha w(n)^2$$

where e(n) is the estimation error

$$e(n) = d(n) - w(n)u(n)$$

d(n) is the desired response, u(n) is the input, and α is a constant. Show that the time update for the parameter vector w(n) is defined by

$$w(n+1) = (1 - \mu\alpha)w(n) + \mu u(n)e(n)$$

What is the role of the constant α (comment the cases of very large α and very small α).

7. (4 points) Application description: Draw the structure of an adaptive echo canceller. Discuss the significance of each signal.