- 2. Are the following true or false? (0.5 p/point)
 - a) If the efficiency of the algorithm is in O(n), it is for sure also in $O(n \lg n)$.
 - b) If the efficiency of the algorithm is in $\Omega(n)$, it is for sure also in $\Omega(n \lg n)$.
 - c) If the efficiency of the algorithm is in $\Omega(\lg n)$, it is for sure also in $\Theta(\lg n)$.
 - d) If the efficiency of the algorithm is in $O(\lg n)$, it is for sure also in $\Theta(\lg n)$.
 - e) If the efficiency of the algorithm is in $\Theta(n \lg n)$, it is for sure also in $\Omega(\lg n)$.
 - f) If the efficiency of the algorithm is in $\Theta(n \lg n)$, it is for sure also in $O(\lg n)$.
 - g) If the efficiency of the algorithm is in $\Theta(n^2)$, it is for sure also in $\Omega(n^2)$.
 - h) If the efficiency of the algorithm is in $\Theta(n^2)$, it is for sure also in $O(n^2)$.
 - i) Searching for an element in a chained hash table is in $\Theta(1)$
 - j) Removing an element from a chained hash table is in $\Theta(1)$
 - k) Searching for an element in a singly linked list is in $O(n^2)$
 - l) All basic stack operations (Stack-Empty, Push, Pop) have $\Theta(1)$ efficiency
- 3. a) Define binary tree, completely balanced binary tree, binary search tree, and heap.
 (1 p)
 - b) Integer keys are added in a random order into a binary search tree. What is the asymptotic efficiency of the addition and search operations. (1 p)
 - c) Draw a legal red-black tree that contains the keys 2, 5, 6, 8, 11, 12, 12, 13, 16, 17, 23, 23, 31, 32, 35 (and no other keys).(2 p)
 - d) Show the order in which the Dijkstra's algorithm goes through the graph below. The node A is the source and the edges are handled in an alphabetical order. Write your answer in the following format: "P grey, Q grey, P black ...". (2 p)

