TIE-50407 Data Processing Implementations

Jani Boutellier

Exam March 6, 2019

Calculators and dictionaries are allowed

- Explain shortly [1 point each]:
 - a) Critical path
 - b) Periodic schedule (in synchronous dataflow)
 - c) IEEE-754 denormal numbers
 - d) Truncation of magnitude rounding
 - e) Dependency graph
 - f) Loop bound
- 2. What is the decimal value of the binary number 1001101 when assuming
 - a) 8-bit signed integer representation, [2 points]
 - b) 8-bit fractional (signed) representation? [2 points]
 - c) What is the largest representable number in representation of a), and b)? [2 points]
- 3. Consider the DFG shown below, where the number at each node denotes its execution time.
 - a) What is the maximum sample rate of this DFG? [2 points]
 - b) What is the fundamental limit on the sample period for the system described by this DFG? [2 points]
 - Manually retime this DFG to minimize the clock period by using the node retiming technique.
 [2 points]

4. Consider the synchronous dataflow (SDF) graph G₁

- a) Define what inconsistency of an SDF graph means [2 points]
- b) Show that G_1 is inconsistent [2 points]
- c) Create a consistent graph G_1' by modifying *one* (input or output) actor sample rate in G_1 and show that G_1' is consistent [2 points]

- **5.** Approximate ln(6) using 4 CORDIC iterations.
 - a) Which coordinates do you use (circular, linear or hyperbolic)? Do you use vectoring mode or linear mode? What is the function used to evaluate d? [2 points]
 - b) What initialization and post-processing is required? [2 points]
 - c) What is the approximation you get? [2 points]

n	$w = \operatorname{arctanh} 2^{-n}$	$w = \arctan 2^{-n}$	
0	n/a	0.785400	
1	0.549306	0.463648	
2	0.255413	0.244979	
3	0.125657	0.124355	
4	0.062582	0.062419	

$$\begin{cases} x_{n+1} = x_n - md_ny_n2^{-\sigma(n)} & \mathsf{d_n} = \begin{cases} 1 \text{ if } \mathsf{y_n} \leq 0 \\ -1 \text{ otherwise} \end{cases} \\ y_{n+1} = y_n + d_nx_n2^{-\sigma(n)} & \text{vectoring mode} \end{cases}$$

$$z_{n+1} = z_n - d_nw_{\sigma(n)}, \qquad d_n = \begin{cases} 1 \text{ if } \mathsf{y_n} \leq 0 \\ -1 \text{ otherwise} \end{cases}$$

Computations Using CORDIC Algorithm in Different Configurations $\,$ NOTE: ω in this table equals z

operation	configuration	initialization	output	post-processing and remarks
$\cos heta, \sin heta, an heta$	CC-RM	$x_0=1$ $y_0=0$ and $\omega_0= heta$	$x_n = \cos \theta$ $y_n = \sin \theta$	$\tan \theta = (\sin \theta / \cos \theta)$
$\cosh \theta, \sinh \theta$ $\tanh \theta, \exp(\theta)$	HC-RM	$x_0 = 1$ $y_0 = 0 \text{ and } \omega_0 = \theta$	$x_n = \cosh \theta$ $y_n = \sinh \theta$	$ \tanh \theta = (\cosh \theta / \sinh \theta) $ $ \exp(\theta) = (\cosh \theta + \sinh \theta) $
$\ln(a), \sqrt{a}$	HC-VM	$\sqrt{x_0} = a+0.25, y_0=a-0.25$ $\ln x_0 = a+1, y_0=a-1 \mid \omega_0=0$	$ \begin{aligned} x_n &= \sqrt{a} \\ \omega_n &= \frac{1}{2} \ln(a) \end{aligned} $	$\ln(a)=2\omega_n$
arctan(a)	CC-VM	$x_0 = 1$ $y_0 = a \text{ and } \omega_0 = 0$	$\omega_n = \arctan(a)$	no pre- or post-processing
division (b/a)	LC-VM	$x_0 = a$ $y_0 = b \text{ and } \omega_0 = 0$	$\omega_n = b/a$	no pre- or post-processing
polar-to-rectangular	CC-RM	$x_0 = R$ $y_0 = 0 \text{ and } \omega_0 = \theta$	$x_n = R\cos\theta$ $y_n = R\sin\theta$	no pre- or post-processing
rectangular-to-polar $\tan^{-1}(b/a)$ and $\sqrt{a^2+b^2}$	CC-VM	$x_0 = a$ $y_0 = b \text{ and } \omega_0 = 0$	$x_n = \sqrt{a^2 + b^2}$ $\omega_n = \arctan(b/a)$	no pre- or post-processing

The computation of $\tan \theta$ and $\tanh \theta$ require one division operation, while $\exp(\theta)$ and $\ln(a)$ require one addition and one shift, respectively, for post-processing. The computation of \sqrt{a} and $\ln(a)$ require one increment and one decrement for pre-processing as shown in column 3, for "initialization".