TIE-50406 DSP Implementations

Jani Boutellier

Exam Dec 20, 2017

Calculators and dictionaries are allowed

- 1. Explain shortly (1 point each):
 - a) IEEE-754 denormal numbers
 - b) Convergent rounding
 - c) Saturation arithmetic
 - d) An enabled node (in SDF graphs)
 - e) Periodic schedule (in SDF)
 - f) Inter-iteration precedence constraint
- **2.** A DSP application is implemented on a 32-bit processor, which has only 32-bit registers, 32-bit memory system, and 32-bit arithmetic units. The piece of C code below shows a part of the implementation. Variables *x*, *w*, *s*, and *result* use the same fractional number representation.
 - a) What is the number representation used? (1 point)
 - b) Explain why s[k] is shifted (1 point)
 - c) Explain why 16384 is added to y (1 point)
 - d) Explain why y+16384 is shifted? (1 point)
 - e) In the code, there is a possibility for overflow. Revise the code to avoid the overflow. Assume that coefficient w never gets value -1. (2 points)

```
int y, x[16], w[16], s[16], result;
...
y = 0;
for (int k=0; k<16; k++){
    y = y + w[k]*x[k] + (s[k] << 15);
}
result = (y + 16384) >> 15;
```

- **3.** Consider the 6th order orthogonal filter structure shown below. All operations in this structure are CORDIC rotation operations. Assume that each CORDIC rotation operation requires 10 ns.
 - a) Calculate the iteration bound of this filter (2 points)
 - b) Show the critical path of this filter (1 point)
 - Manually pipeline and/or retime the filter structure to achieve a critical path of computation 20 ns. Show all the cutset locations used for retiming explicitly. (3 points)

4. Perform unfolding by factor 2 for the DFG below (6 points)

5. Consider the FIR application dependency graph below

Edge Mapping		
е	p ⁷ e	s ^T e

- a) For the FIR application, draw the systolic design α with $\mathbf{d} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{p}^T = [0 \ 1]$, $\mathbf{s}^T = [2 \ 1]$ (3 points)
- b) What is the hardware utilization efficiency (HUE) of the design α ? (1 point)
- c) Construct the regular iterative algorithm (RIA) description of the FIR application (1 point)
- d) Draw the reduced dependence graph (RDG) of the FIR application (1 point)