A non-programmable pocket calculator is allowed. Each problem is worth 6 points. This is a 30 point exam.

- 1. Consider the Cipher Block Chaining (CBC) mode used with AES-128.
 - (a) Draw a block diagram for CBC encryption.
 - (b) After observing k sequential CBC ciphertext blocks $C_1
 ldots C_k$, an attacker notices $C_j = C_k$ for some j < k. Assuming the attacker also knows plaintext block M_k , show how to recover M_j .
 - (c) Estimate the smallest k for which the above attack succeeds with probability greater than one half.
- 2. Consider Double DES that, with 56-bit key K_1 and 56-bit key K_2 , encrypts 64-bit plaintext P to 64-bit ciphertext C using $C = E_{K_2}(E_{K_1}(P))$ where E is DES encryption. Given a known plaintext/ciphertext pair (P,C), show how to recover (K_1,K_2) using roughly 2^{56} steps with the meet-in-the-middle technique.
- 3. Consider the linear recursive sequence $s_i = s_{i-1} + s_{i-4}$ over \mathbf{F}_2 .
 - (a) Draw a block diagram of a 4-stage LFSR that implements this sequence.
 - (b) Set the initial state as $s_0 = 1$ and $s_1 = s_2 = s_3 = 0$. Calculate the sequence output until it becomes periodic.
 - (c) Calculate the periods of the sequence for all possible initial states.
- 4. Consider the RSA cryptosystem with modulus $n = 17 \cdot 59 = 1003$.
 - (a) Compute the private decryption exponent d using public encryption exponent e=3.
 - (b) Encrypt the plaintext p = 58.
 - (c) Decrypt the ciphertext c = 16.
- 5. Consider Diffie-Hellman key exchange in \mathbf{F}_{29}^* with multiplicative generator g=2.
 - (a) In the first protocol run, Alice's secret exponent is a=13 and Bob's secret exponent b=9. Compute the shared key K.
 - (b) In the second protocol run, Alice sends $\alpha = 27$ for her public key. Compute the discrete logarithm of α to the base g.