MAT-42106 Applied Logics. Partial examination 1. 17.11.2010 in Lectur room SJ202. Esko Turunen

Problem 1.

Assume we are observing children who have an allergic reaction to, say, tomato, apple, orange, cheese or milk. These observations are presented in the following table:

Child	Tomato	Apple	Orange	Cheese	Milk
Anna	1	1	0	1	1
Aina	1	1	1	0	0
Naima	. 1	1	1	1	1
Rauha	0	1	1	0	1
Kai	0	1	0	1	1
Kille	1	1	0	0 .	1
Lempi	0	1	1	1	1
Ville	1	0	0	0	0
Ulle	1	1	0	1	1
Dulle	1	0	1	0	0
Dof	1	0	.1	0	1
Kinge	0	1	1	0	1
Laade	0	1	0	1	1
Koff	1	1	0	0	1
Olvi	0	1	1	1	1

Construct the 4-ft contingency table for $\phi = \text{Apple}$ and $\psi = \text{Cheese}$. Is

$$v(\phipprox\psi)= exttt{TRUE}$$

in this model, where \approx is basic implication, p=0.7 and base = 6?

Problem 2.

Let M and N be two models that generate the following two four–fold tables.

M	ψ	$\neg \psi$		V	ψ	$\neg \psi$
ϕ	a_1	b_1		ϕ	a_2	b_2
$\neg \phi$	c_1	d_1	7	φ	c_2	d_2

Under which conditions N is (a) associationally (b) implicationally better than M? (c) Define the truth condition of Basic equivalence quantifiers.

Problem 3.

Is ϕ a logical consequences of a set $\{\neg \psi \lor \phi, \psi \land \phi\}$?

Problem 4.

Prove that $\Sigma-$ double implication quantifiers are associational.

Problem 5.

(a) Why are rules of inference useful in GUHA–logic framework? (b) Let $\phi(x)$, $\psi(x)$, $\chi(x)$ be formulae, and let \approx be an implicational quantifier. Prove that

$$\frac{[\phi \wedge \neg \chi] \approx \psi}{\phi \approx [\chi \vee \psi]}$$

is a sound rule of inference.