MAT-42106 Applied Logics Esko Turunen Examination 14.12.2010

No calculator, no extra material is allowed! Return the distributed material clean!

In case you are take an examination of

- the data mining part, solve problems 1 4,
 the many-valued similarity part, solve problems 5 8,
 the whole course, solve even problems 2, 4, 6 and 8.

Problem 1.

Let M and N be two models that generate the following two four-fold tables

			L
9	ф	M	
Ç	a_1	ψ	
d_1	b_1	Ψ	
0	φ	Z	
Ç	a_2	ψ	
d_{2}	b_2	φr	

Under which conditions N is (a) associationally (b) implicationally better than M? (c) Define the truth condition of Σ —double implication quantifiers.

Problem 2.

Is $\neg \phi$ a logical consequences of a set $\{\psi \lor \neg \phi, \psi \land \phi\}$?

Problem 3.

Prove that founded equivalence quantifiers are associational

(a) Why are rules of inference useful in GUHA-logic framework? (b) Let $\phi(x)$ $\psi(x)$, $\chi(x)$ be formulae, and let pprox be an implicational quantifier. Prove that

$$\phi \approx [\chi \vee \psi]$$

is a sound rule of inference. Does this claim hold is \approx is not implicational?

Problem 5.

Let L be an MV-algebra. Prove that a Galois connection, also called $\it residuation$

$$a \odot b \leq c$$
 if, and only if $a \leq b \rightarrow c$

holds for all $a, b, c \in L$

Problem 6.

Let L be the Lukasiewicz structure. (a) How are the operations \to , *, \wedge , \vee , \odot , \oplus , \leftrightarrow defined on L? (b) What is their logic intrepretation?

Problem 7.

J. S. Mill defined in 1843: if two objects A and B agree on k attributes and disagree on m attributes, then the number

$$sim(A, B) = \frac{k}{k+m}$$

can be taken to measure the degree of partial identity between A and B. Prove that sim(-,-) is a Lukasiewicz many-valued similarity.

Problem 8.

paper. Enclose the sheet with your answers. by total fuzzy similarity method. - It is enough to estimate the membership in 50-50 situations pedestrians are winners. Calculate the corresponding output them is 1 sec. The corresponding weights are 1, 2 and 3, respectively. Moreover, Consider a fuzzy rule base system presented apart. Assume pedestrian waiting time is 15 sec, there are 2 approaching vehicles and the shortest gap between degrees from the picture; you may do drawings and sketches on that sheet of