SGN-4106 Speech Recognition

Exam 22.5.2013

Annamaria Mesaros, annamaria.mesaros@tut.fi Jani Nurminen, jani.nurminen@tut.fi

Students may use their own calculators (a standard scientific calculator). The answers should be in English. The questions do not need to be returned.

Problem 1

Explain the meaning of the following terms (1 point each): (Write maximum two sentences for each.)

- a) triphone
- b) coarticulation
- c) Gaussian mixture model
- d) mel scale
- e) forward algorithm
- f) Viterbi algorithm

Problem 2

Explain in general terms the steps required for building an isolated word recognition system based on HMM. Specifically, what are the components of such a system and how it is used for recognition? (Write maximum one page.) (6 points)

Problem 3

Describe the processing steps needed for calculating mel-frequency cepstral coefficients (MFCCs) in a standard front end of a speech recognition system. Explain shortly the purpose of each operation. No formulas needed! (*Write maximum one page.*) (6 points)

Problem 4

- a) Explain shortly the reestimation of HMM parameters using the forward-backward algorithm. No formulas needed! (Write maximum half a page.) (3 points)
- b) Explain shortly the construction of a bigram language model and how it is used in a speech recognition system. No formulas needed! (Write maximum half a page.) (3 points)

Problem 5

A two-state discrete-output HMM has the following parameters λ :

$$P(q_1|q_1) = 0.7, P(q_2|q_1) = 0.3,$$

$$P(q_1|q_2) = 0.4, P(q_2|q_2) = 0.6,$$

$$b_1(R) = 0.5$$
, $b_1(G) = 0.4$, $b_1(B) = 0.1$,

$$b_2(R) = 0.3, b_2(G) = 0.5, b_2(B) = 0.2.$$

At time t = 1 the HMM is in state 1.

- a) Calculate the total probability $P(O|\lambda)$ of observation sequence $O = o_1o_2o_3o_4 = GGRB$. (3 points)
- b) What is the most likely state sequence given the above observation sequence *O*? (3 points)