TLT-2716, Teletraffic theory: Queuing theory

Part 1: Theoretical questions

16 2. 2010 DHITEI HOLTCHALOW

Answer the following questions.

- 1. Give a definition of a Markov process.
- 2. What is the distribution of sojourn time in the state of discrete-time MC?
- 3. When the Markov process is said to be homogenous?
- 4. What is the residual lifetime?
- 5. Give a meaning of each position in Kendall's notation.
- 6. Give two examples of queuing systems in Kendall's notation.
- 7. Give a definition of memoryless property.
- 8. Which two distributions are characterized by memoryless property?
- 9. Which metrics does Little's result relate?
- 10. For which queuing systems Little result holds?
- 11. Formulate Kleinrock's principle?
- 12. For which queuing systems Kleinrock's principle holds?
- 13. Formulate PASTA property.
- 14. For which queuing systems PASTA principle holds?
- 15. What the rate conservation law states?

Part 2: Theoretical analysis

16. Consider M/M/1/K queue, λ , μ – arrival and service rates.

- I. What is the equilibrium condition for this system? Why? Explain.
- II. How the system state is defined? Why is it possible? Explain.
- III. Draw the state transition diagram for this system.
- IV. Get a global balance equation for state 3.
- V. Get linear equations describing the system at steady-state.
- VI. Derive an expression for steady-state probabilities.

Hint: it is not needed to determine the sum of series you may encounter.

- VII. Derive an expression for the mean number of customers in the system.
- VIII. Derive an expression for mean waiting time in the system.

17. Consider M/G/1 queuing system. Complete the following tasks.

- I. Name at least two methods applicable to this system.
- II. How time points of the imbedded Markov chain should be chosen? Why?

18. Consider GI/M/1 queuing system. Complete the following tasks.

- I. Name the method applicable for such system that we used in lectures.
- II. How time points of imbedded Markov chain should be chosen? Why?
- III. Draw time diagram of interarrival time between i^{th} and $(i+1)^{th}$ arrivals. Denote and explain all events associated with this interarrival time and needed for further analysis of this queuing system.
- IV. Draw state transition diagram of imbedded Markov chain.

Hint: it is not needed to derive expression for transition probabilities or steady state of the imbedded Markov chain.

Part 3: Numerical evaluation

- 19. In the trunk group with m=6 trunks there are on the average 20 calls per hour. The mean holding time of a call is exponentially distributed with mean 5 min. Determine:
 - I. Mean interarrival time;
 - II. Mean service rate;
 - III. Offered traffic load to the system.
 - IV. Server utilization.
- 20. For a computing system with one processor the processing time per customer is exponentially distributed with an average time of 6 minutes. Customers arrive according to Poisson process at an average rate of one customer every 8 minutes and are processed on a FCFS basis. Determine:
 - I. Kendall's notation of the queuing system;
 - II. Mean number of customers in the system;

Hint: the mean waiting time in the system: $E[W] = \frac{1}{\mu(1-\rho)}$, ρ is the offered traffic load, μ is the service rate.

III. Probability that an arriving customer require less or equal to 20 minutes to leave the system after successful service.

Hint: distribution of sojourn time in the system is: $W(t) = \Pr\{w \le t\} = 1 - e^{-\mu(1-\rho)t}$.

- 21. Consider M/M/m/m queuing system. Assume that the mean arrival rate is 180 customers per hour, mean service time is 0.2 minute and m=3. Determine the following:
 - I. Is this system syable? Why?
 - II. Mean interarrival time;
 - III. Mean service rate;
 - IV. How to get the effective arrival rate? Is it different compared to the arrival rate?

Hint: in the last question no computation are needed just step-by-step explanation.