O false

O false

O false

O true

O true

O true

Nimi/Name:	Op.nro/Student number:		
Email:	Huom! Voit vastata myös Suome	ksi tähän	tenttiin.
 Check the correct bullet. Each wrong ones. Empty bullets –½ 	correct answer gives +1/2 points, each wrong points. (Max 12 points).	,−½ poin	ts after fou
The largest digit value in a redundant	number system is at maximum r-1	O true	O false
Number system defines how the digits	s look like in the digit vector.	O true	O false
The conversion from one radix to and converges.	ther of the fractional part of a number always	O true	O false
One possible sign extended version of (r=10) is 9923.99.	f a negative 9's complement number 923	O true	O false
Negative numbers can always be repr constant C in all number systems.	resented with the help of complementation	O true	O false
The terms MSB (Most Significant Bit) used in a weighted number system.	and LSB (Least Significant Bit) can only be	O true	O false
The largest digit value in a non-canon	ical number system is at maximum r+1	O true	O false
10's complement number 877 is same	as -124 in normal decimal repreresentation.	O true	O false
ULP means the weight of the least sig	nificant digit.	O true	O false
The complementation constant for an r=8.	seven-complement number is 64, if n=2 and	O true	O false
Lookbehind borrow is used in the dire complementing either operand.	ct subtraction of unsigned numbers without	O true	O false
It is possible to change a half-adder to in an AND-gate input that forms the co	o a half-subtractor by only adding one inverter arry-out signal.	O true	O false
Carry-free additions can be performed	d with SD-number system and radix r < 2.	O true	O false
The operation time of Carry-complete	adder is independent of the operands.	O true	O false
Parallel-prefix adders save sum and of	carry bits separately.	O true	O false
Radix-4 lookbehind recoding produce without any specific correction steps.	s correct results for 2-complement numbers	O true	O false
	recoding yield the same maximum multiples of or subtracted from the partial product.	O true	O false
Multiplier recoding makes the operation		O true	O false
Braun multiplier is not suitable for 1's		O true	O false
Normalization ensures preserving as	many significant digits as possible in division.	O true	O false
SRT-division results in SD quotient th	at must be converted to a conventional	O true	O false

Normalizing a floating point number means that only fractional numbers not larger

The same number range can be obtained in a 256-bit fixed-point number and an 8-

With the same number of bits there are the same number of representable fixed

than one must be used as the floating point numbers.

and floating point numers.

bit floating-point number (r=2, mantissa 1 bits minimum).

Perform addition X+Y using "conditional-sum"-principle into the following Table. Assume
 C_{tm}=0 for x_I+y_I. Show with arrows or by other means how do you obtain the sum and carry bits
 for the next step. (6p).

		[i]	7	6	5	4	3	2	1	0
	X Y	X _i y _i	1 0	0	1	1 0	0	1	1 0	0
Step 1 $C_{in}=0$ $C_{in}=I$		S								
		С								
	$C_{in}=I$	S								
		c								
Step 2 $C_{in}=0$ $C_{in}=I$	C _{in} =0	S								
		c								
	5									
	100	c								
30	$C_{in}=0$	S								
		С								
	$C_{in}=I$	S								
		c								
Sum										

- Show block diagram of a 5 operand (five numbers are added at the same time), 8 bit carry save adder. Show bit widths of all blocks and components and signal lines between them. Explain the operation. (6 points)
- Suppose 2's complement numbers. Let multiplicand be 010112 and multiplier be 101102.
 - a) Multiply the numbers (use partial product right shift method). (4 points)
 - Recode the multiplier with radix-2 Booth recoding method (1-bit scan, lookbehind recoding). (2 points)
 - Multiply the numbers with above recoding. (4 points)

5) Let there be floating-point numbers A=0.100000101100x2⁰¹¹¹ and B=0.110000010110x2⁰⁰⁰¹, for which mantissa (12 bits) is an unsigned fraction 0.5₁₀ ≤ m < 1₁₀. Calculate A-B with the help of following Table. Round the result using round-to-nearest-even method. Show all steps and explain the names and meaning of potential extra bits. For intermediate steps use max 15 bits for the operands. (8p)

A	В	borrow-in	A-B	borrow-out
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	- 1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1